حل عددی مسائل مقدار مرزی براساس تقریب سینک و بررسی همگرایی روش

پایان نامه
چکیده

دراین پایان نامه تقریب عددی روش سینک را برای مسائل مقدار مرزی مرتبه دوم و مرتبه چهارم بدست می آوریم . همگرایی روش سینک را بصورت تحلیلی برای این نوع از مسایل بررسی کرده و نشان می دهیم که نسبت همگرایی نمایی است که در آن ‏‎k‎‏ مستقل از ‏‎n‎‏ است . همچنین نحوه کاربرد روش سینک درحل مسائل مقدار مرزی ارائه می گردد. جواب بدست آمده از روش سینک را با جوابهای بدست آمده از روش های عناصر متناهی ، تفاضلات متناهی وروش اسپلاین مقایسه می کنیم و نتیجه می گیریم که نتایج عددی حاصله ا زتقریب سینک برای مسائل مرزی ا زسه روش فوق بهتر است و با تعداد مراحل کمتری تقریب دقیق تری نسبت به سه روش یاد شده اخیر بدست می دهد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حل مسائل مقدار مرزی مرتبه دوم با استفاده از روش های هم محلی سینک و سینک - گالرکین

در این پایان نامه، روش هم محلی سینک را برای حل مساله مقدار مرزی دو نقطه ای و دستگاه معادلات دیفرانسیل خطی و غیر خطی از مسائل مقدار مرزی مرتبه دوم معرفی می کنیم. همچنین روش سینک-گالرکین در حل مسائل مقدار مرزی دو نقطه ای مورد استفاده قرار می گیرد. در هر دو روش از تابع پایه ای سینک برای تقریب توابع استفاده می شود. در انتها برای تأیید دقت روش، نتایج عددی با جواب های واقعی مقایسه شده اند.

کاربرد روش سینک گالرکین در حل مسائل مقادیر مرزی منفرد

در این پایان نامه، برای حل مسأله مقدار مرزی مرتبه چهارم در حالت خطی و غیرخطی به بحث در مورد روش گالرکین با استفاده از توابع پایه سینک می پردازیم. روش سینک را بر پایه هر دو نوع تبدیل نمایی یگانه و دوگانه برای شرایط مرزی همگن و ناهمگن به کار خواهیم برد. همگرایی روش را به صورت تحلیلی بررسی کرده و نشان می دهیم مرتبه همگرایی مبتنی بر تبدیل نمایی یگانه به صورت o(e^(-k?n) ) می باشد، و هم چنین مرتبه هم...

کاربرد توابع سینک در حل مسائل مقدار مرزی غیرخطی در مهندسی و علوم کاربردی

معادلات دیفرانسیل منفرد، کاربردهای قابل توجهی در زمینه های مختلف علوم و مهندسی یافته اند. به واسطه ی حضور تکینگی، این معادلات دیفرانسیل مشکلاتی را در محاسبه ی جواب هایشان پدید می آورند. روش های تقریبی به مانند قواعد انتگرال گیری عددی، تفاضلات متناهی و عناصر متناهی معمولاً از چندجمله ای ها به عنوان توابع پایه در تقریب جواب بهره می برند که روی ناحیه ای که جواب هموار است، عموماً از دقت قابل قبولی بر...

مدل سینک گالرکین برای حل مسائل غیر خطی با مقدار مرزی

مدل سینک گالرکین برای جواب های عددی مسائل غیرخطی استفاده می شود که این مسائل غیر خطی شامل معادلات دیفرانسیل مرتبه دوم و چهارم و ششم، همگن و غیرهمگن با شرایط مرزی کرانداری باشد. این طرح در چهار مسئله غیرخطی آزمایش شده است. نتایج بدست آمده نشان می دهد که قابلیت اطمینان و کارایی این الگوریتم بسیار بالاست.

همگرایی روش های اصلاح خطا برای حل مسائل مقدار اولیه

در این پایان نامه روش های اصلاح خطا ی تک گامی نیمه صریحecm)‎)از مرتبه ی بالا برای حل مسائل مقدار اولیه توسعه داده می شوند.‎‎‎ecm ‎ همگرایی بالا از مرتبه ی‎‎ را بدون هیچگونه فرآیند تکراری‏، که در اکثر روش های ضمنی نیاز است‏، فراهم می آورد. این کار با ساختن یک تقریب موضعی با خطای باقیمانده از مرتبه ی در هر گام زمانی امکان پذیر است. به عنوان مثال، یک تقریب درجه ی دو موضعی ساخته می شود. علاوه براین...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه علم و صنعت ایران

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023